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Abstract-The effects of viscous dissipation on the linear stability of a liquid film flowing down a heated 
inclined plane are examined. It is shown that for the thermal mode of instability viscous dissipation has 
both stabilizing and destabilizing influences. The overall effect on the stability of the flow depends on the 

value of the Prandtl number. 

1. INTRODUCTION 

A LIQUID film flowing down an inclined heated plane 
is subject to a hydrodynamic mode of instability, 
which can occur in the isothermal case, and also to 
a thermal mode of instability, which can occur in the 
presence of a temperature gradient when the plane is 
horizontal. These two possible modes of instability 
were examined by Kelly and Goussis [l] on a linear 
basis and within the confines of the Boussinesq 
approximation. It was shown that heating has only a 
higher order effect on the hydrodynamic mode. As a 
result, the stability of the flow with respect to that 
mode is determined by the results of the homogeneous 
problem for which it has been shown that the insta- 
bility assumes the form of transverse waves. Further- 
more, it was shown that the free surface deflection 
has only a higher order effect on the thermal mode 
of instability. For this mode, the basic flow tends 
to stabilize the disturbances whose vector has a 
component in the streamwise direction. As a result, the 
instability assumes the form of stationary spanwise- 
periodic longitudinal rolls. When surface waves con- 
stitute the hydrodynamic mode, Kelly and Goussis 
[l] determined a transition angle of inclination p,,, 
beyond which the hydrodynamic mode is dominant 
and below which the thermal mode is dominant. This 
angle is given by 

5aATPr “’ 
fllr = tan-l ~ 

[ 1 2RaC,B=o 
(I) 

where ATis the temperature difference across the film, 
Ru,,~=, denotes the critical Rayleigh number at zero 
angle of inclination. As equation (1) shows, /It, is in 
general small except for very viscous liquids. 

Here, the effects of viscous dissipation on the linear 
stability of the film flow will be examined. These 
effects will be regarded as a departure from the 
Boussinesq approximation while all the other higher 

order effects will be ignored. When B > &, the velocity 
field for the more unstable disturbance is uncoupled 
from the temperature field Cl]. As a result, inclusion 
of the viscous dissipation term in the energy equation 
will have no effect on the stability of the flow. 
Therefore, only the thermal mode of instability, which 
is the dominant mode when fi < fi,,, needs to be 
considered. 

In the absence of viscous dissipation the onset of 
the thermal mode of instability for the film flow 
problem is independent of the basic velocity profile 
and is governed by a set of equations similar to that 
governing the Rayleigh-Benard problem Cl]. In the 
latter problem, the effects of viscous dissipation can 
be considered only on a non-linear basis since the 
term which expresses these effects in the energy 
equation involves the squares of disturbance quantit- 
ies. The effects of viscous dissipation on the non- 
linear Rayleigh-Benard problem were considered by 
Turcotte et al. [2] along with the effects of an adiabatic 
temperature gradient. They showed that both effects 
are characterized by the same non-dimensional par- 
ameter, namely, the dissipation number so that, at 
least in the non-linear context, they have to be 
considered simultaneously. Their numerical calcu- 
lations of finite amplitude convection show that in 
the infinite Prandtl number limit, increasing values of 
the dissipation number decrease the velocity and 
finally stabilize the layer. The effects of an adiabatic 
temperature gradient on the Rayleigh-Benard prob- 
lem can be considered on a linear basis. Jeffreys [3] 
proved that the resulting problem is equivalent to 
one with a smaller basic temperature gradient which 
therefore yields a more stable flow. It can be shown 
that Jeffreys’ treatment of the effects of an adiabatic 
temperature gradient is still applicable in the problem 
considered here and yields exactly the same results 
as in ref. [3]. Therefore, we can proceed with an 
examination of the effects of viscous dissipation only. 
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NOMENCLATURE 

CP specific heat at constant pressure K thermal diffusivity 
D d@ fi dynamic viscosity 
F amplitude of disturbance velocity a P kinematic viscosity 

g gravitational acceleration P density. 
G amplitude of disturbance velocity G 
h heat transfer coefficient Dimensionless groups 
H amplitude of disturbance velocity fi Bi Biot number, hL/K 

k wavenumber Di Dissipation number, agL/c, 
K thermal conductivity PY Prandtl number, V/K 
L film layer depth Ra Rayleigh number, ~gAT*~~v~ 

P pressure I dimensionless group, k R&* 

T temperature A dimensionless group, sin fl/(2aAT,). 
AT reference temperature difference 
t time Superscripts 
U velocity component in x-direction non-dimensional steady state quantities 
V velocity component in y-direction 

* non-dimensional perturbation 

v, reference velocity, gl” sin j?/(Zv) quantities. 
W velocity component in z-direction 
x, Y, z Cartesian coordinates. Subscripts 

C critical values 
Greek symbols Y> z partial derivative 

; 

coefficient of thermal expansion W value at the heated wall 
angle of inclination co value at the ambient conditions. 

8 amplitude of disturbance 
temperature 

the governing equations and boundary conditions for 
the basic flow become 

DzP = -2, ii(l) = 0, DC(O) = 0 (3a-c) 

D2T= -DiRaA2(Dtl)2, T(l) = 0, 

DT(0) = Bi[T(O) + R] (4a-c) 

FIG. 1. Configuration of the flow. where R = (T, - T-)/AT The solutions to the above 
equations are 

Since a basic velocity exists for the film flow problem, 
such an analysis can be done on a linear basis. 
In Section 2 the linear perturbation equations are 

u = 1 - zz, T= (z - 1) + Di Ra A2(z - z4)/3. 

presented and corrections, which account for the (%b) 

effects of viscous dissipation, on the critical Rayleigh 
number and wavenumber are derived. The results are 
discussed in Section 3. 

From the scalings, equations (2b) and (2c), and the 
definition of R we obtain 

2. FORMULATION OF THE PROBLEM 

The configuration of the flow examined here is 
depicted in Fig. 1. Considering the depth of the film 

AT= AT, 
Ra A2 

1 - Di----- @I 3(1 + Bi) 1 
L as the length scale and introducing the non- 
dimensional variables 

where AT, = (T, - T,)Bi/(l + Bi). 
Assuming that, as is the Di = 0 case Cl], the 

u = I$, T= ATT+ T,, AT= T, - T(0) basic flow stabilizes all but the spanwise-periodic 
(2a-c) disturbances and that the disturbance at the marginal 
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state is stationary, the governing non-dimensional first-order problem 
stability equations are 

ikGi +DH, =0 
0, + fiZ = 0 (7a) 

Rah 
(0’ - /c~)~H, + &Bi = ri 

~(1 + DiS)(tiDC) = V2fi (7b) 
(D2 - k2)8, - I,(DTa)H, = r2 

0 = vzo - py (7c) H,(l) = DHi(1) = 8;(l) = 0 

O=V’&-&-Rap 
(7d) H,(O) = PH,(O) = D&(O) - E&(O) = 0 

tQDT= V2?+ 2ADi(Dti))a, (74 
where 

(124 

(12W 

(124 

(12d-1) 

(12g-k) 

where S = -RaA2/[3(1 + Si)]. These equations are 
supplemented by the non-slip and isothermal con- 
ditions at the wall 

(121) 

a=fj=$=$=O atz=l (7f) 

and by the thermal, shear, and normal stress con- 
ditions at the free surface 

t=BiT atz=O (7g) 

a, = G, + tiY = 0 atz=O (7h) 

fi=o at z = 0. (7i) 

In the derivation of the stability equations (7a)-(7i), 
apart from the scaling, equations (2a)-(2c), a diffusive 
scaling was used for the disturbance quantities [l]. 
By setting either A or Di equal to zero in equations 
(7a)-(7i), the Rayleigh-Benard problem is recovered 
in the form considered by Sparrow et al. [4]. Here 
the effects of viscous dissipation will be regarded as 
a small departure from the Boussinesq approximation. 
Hence, after representing the disturbance quantities 
in the usual way 

(k0, a’, 0 = C R(z), G(z), H(z), WI ev (i ky) (8) 

an expansion of the variables and dependent par- 
ameters is made in the following manner 

(T F, G, H, 0, Ra) = Z(Di)i( Tj, Fj, G, Hj, 0j, Raj). (9) 

Substituting equations (8) and (9) into equations (7a)- 
(7i), resealing F and 0 for convenience as 

Fj = F,{Ra, A/Pr), 0, = gj/(k2 Ra)‘12 (10) 

and collecting terms of the same powers in Di, the 
following sets are obtained: 

zero-order problem 

ikGo+DHo=O (1 la) 

(D2 - k2)flo = (Dti)H, (lib) 

(0’ - k2)2H, + A,8, = 0 (114 

(0’ - k2)8,, - Io(DTO)H, = 0 (114 

Fe(l) = H,(l) = DH,(l) = 8,(l) = 0 (1 le-i) 

DFo(0) = H,(O) = D2Ho(0) = OR0 - Big,(O) = 0, 
(1 lj-m) 

r2 = loHoD$ - 1, (12m) 

lj = (k2 Raj)“‘. (12n) 

In order to find the correction Ra, to the neutral Ra, 
due to the viscous dissipation effects, a solvability 
condition must be applied to the first-order problem. 
For this purpose the solution to the adjoint homo- 
geneous problem is required. Letting 

L= (0’ - k212 
0 ,,“,1’ M=[-;, ;]’ 

x= Ho 
[ 1 PO 

the adjoint homogeneous problem is obtained 
through the following condition 

(X,+(L+ M)X, - xo(L* + M*)X,*) = 0 (13) 

where L*, M*, and X* denote the adjoint operators 
and solution vector and () denote integration over 
the film depth. After some manipulations it can be 
shown that 

H,*=H,and@= -8,. 

The solvability condition is obtained by multiplying 
the governing equations of the first-order problem by 
the adjoint solution and integrating over the film 
depth, i.e. 

(X,*(L+ M)X,) = (X,*R) (14) 

where 

X, = [H,, 8,]’ and R = [r,, r21T. 

Integrating by parts and using the boundary con- 
ditions, the following expression for Ra, is obtained 

Ra, + Ra,S 

Rae 
=A2 $N, =E 

[ I 
(15) 
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where 

N, = 2Ra,I,/I,, N, = -Ra,1,/(31,) (16a,b) 

1, = (H&,)> 1, = ((Du)(DF,)&> (17ab) 

13 = <(DT,)H,&,)> Ti = z - z4. (17c,d) 

Up to this point the Rayleigh number was based on 
the temperature difference AT,. However, the actual 
temperature drop across the film is ATand is given 
by equation (6). In order to consider AT instead of 
A?‘,‘, in the corrected Rayleigh number, we define 

Ra+ = Rag * Ra, + Di[Ra, + Ra,S]. (18) 
0 

Equations (15) and (18) yield 

Ra+ = Ra,(l + DiE) (19) 

where E was defined in equation (15). For fixed values 
of A, Bi, Di, and Pr, Ra+ will be a function of 
the wavenumber. We are interested in finding the 
minimum value of Ra+, say Ra:, which occurs at 
k = k,. Expanding k in powers of Di 

k = k, + Dik, 

equation (19) yields 

(20) 

1 (1 +DiE) 

dE 
+ Di RaOdk 1 t=k,o’ (21) 

However 

dRa+ dRa, 
--Oat k= k, and dk 

dk 
- = 0 at k = kc0 

(22) 

so that the following expression for k, is obtained 

k, = [k,(l + DiC$)l=.co (23) 

where C = - Rao/(kdZRao/dkZ). In a similar fashion, 
the following expression for Ra: is obtained ‘* = A2Di[&(Cs) + (Cs)l.-,, (25) 

Ra, - Ra,, ho = A2Di 2 + N, 1 1 (26) k = k‘s, Ra: = [Rao(l + Di E)],=,co. (24) 

The evaluation of the terms on the right-hand side 
of equations (23) and (24) requires the solution of In the above equations, the terms involving N 1 
the eigenvalue problem, equations (1 la)-( 1 lm). Such come from the dissipation term in the perturbation 
solutions were obtained using a Tau scheme [5]. energy equation (7e). The numerical results shown in 
Calculated values of RacO and k,, are in very good Table 2 indicate that inclusion of this term yields a 
agreement with those presented in ref. [4]. The more stable flow and a higher value for the critical 
integrals in equation (17) were evaluated by a twen- wavenumber. A physical explanation of this behavior 
tieth-order Gaussian quadrature, while the derivatives can be given as follows. For A = 0 (fi = 0), the gravity 
in equation (23) were evaluated by a second-order component parallel to the plane is zero and as a result 
central difference scheme. a mean flow is not generated. In this case equations 

Table 1. Values of Ra,, and k,, for 
different values of Bi 

Ei RacO k co 

IO6 1100.649 2.6823 
10’ 989.491 2.5889 
1o-3 669.137 2.0859 

Table 2. Values of the different terms appearing 
in equations (25) and (26) for different values 

of Bi 

lo6 177.55 - 166.19 118.48 - 2.44 
10’ 156.86 - 160.13 104.45 -2.81 
1O-3 119.34 -128.24 82.39 -4.72 

3. DISCUSSION 

Before we proceed with the presentation of the 
results, we first discuss the Di = 0 case. Table 1 shows 
the values of Ra,, and k,, for different values of the 
Biot number. As the boundary condition, equation 
(7g), shows, Bi + cc and Bi --, 0 correspond to fixed 
temperature and heat flux respectively at the free 
surface. Table 1 shows that RacO decreases monoton- 
ically with decreasing Bi. Sparrow et al. [4], argue 
that this is due to the stronger constraint imposed on 
the temperature perturbation by the fixed temperature 
condition. Physically speaking, in the constant heat 
flux case the heat suppled to (rejected by) the pertur- 
bation at the rigid wall, does not leave (enter) the free 
surface. In the constant temperature case, heat is 
crossing the surface, attenuating thus the carrier 
disturbance. Table 1 shows that k,, exhibits a similar 
behavior as Race. Noting that the wavenumber is a 
measure of the inverse of the distance traveled by a 
moving particle, this behavior is in agreement with 
the comments made for the behavior of Ra,,. 

Proceeding now with the discussion of the effects 
of viscous dissipation on the stability of the film flow, 
equations (23) and (24) are recast for convenience as 
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Table 3. Values of Pr, and Pr, 
for different values of Bi 

Bi 

106 
10’ 
1o-3 

Pr, Pr, 

1.07 48.55 
0.98 37.17 
0.93 17.45 

(7a)-(7i) show that ti = 0. Moreover, with the viscous 
dissipation term absent from the linear disturbance 
equations, the stability of the flow depends only on 
the outcome of competition of the buoyancy and 
diffusion effects upon the motion of a fluid particle 
in the y-z plane. For A # 0, the motion is three- 
dimensional (1? # 0) so that a fluid particle now travels 
a larger distance along a spiral in order to complete 
an orbit. If LX = 0, the fact that ri # 0 has no effect 
on the stability of the flow since the instability 
mechanism described previously is operative only 
during the vertical motion of the fluid particle. This 
is shown in equations (7a)-(7i), where for Di = 0 the 
solution to the eigenvalue problem is independent of 
0. However, when Di # 0, part of the energy which is 
supplied by the buoyancy to the disturbance is not 
only diffused but is dissipated as well. Therefore, by 
consuming energy that otherwise would have gone 
to the kinetic energy of the disturbance, viscous 
dissipation stabilizes the flow. As equation (26) shows, 
this stabilization process decreases as the value of 
the Prandtl number increases. The Prandtl number 
appears in the governing equations in the x-momen- 
tum equation (7b) only and is a measure of the inertia 
forces in the streamwise direction. As the Prandtl 
number increases (say by allowing viscosity to 
increase) these forces diminish and as a result the 
magnitude of 11 decreases. Thus, the dissipation term 
in the energy equation (7e) becomes less stabilizing. 

The terms involving N2 come from the convective 
term in the perturbation energy equation (7e) and 
represent the effects of the viscous dissipation in 
modifying the basic temperature gradient. As equation 
(5b) shows, a non-zero dissipation number yields a 
steeper temperature gradient in the upper part of the 
film (z < 0.63). Consideration of viscous dissipation 
in the basic state is equivalent to heat generation 
across the film. Sparrow et al. [4], examined the 
effects of uniformly distributed internal heat sources 
in the Rayleigh-Benard problem and showed that 
uniform internal heating has always a destabilizing 
influence. The results shown in Table 2 confirm the 
destabilizing influence of the modified temperature 
gradient and indicate a decrease of the critical wave- 
number. 

Equations (25) and (26), show that the overall effect 
of the viscous dissipation on the stability of the flow 
depends on the Prandtl number. For a given Biot 
number, there are two values of the Prandtl number, 

Table 4. Values of the sum in square 
brackets in equation (26) for mer- 
cury (Pr = 0.025) and water 

(Pr = 6) 

Bi z+ N, 

Pr = 0.025 Pr = 6 

lo6 6935.8 - 136.5 
10’ 6114.2 - 133.9 
10-s 4645.3 - 108.3 

say Pr, and Pr,, shown in Table 3, for which viscous 
dissipation has no effect on Ra: and k,, respectively. 
For Pr > Pr, the flow will be destabilized, while for 
Pr < Pr, the flow will be stabilized. Since the values 
of Pr, are very close to unity, we can conclude that 
viscous dissipation will stabilize liquid metals while 
it will destabilize all other liquids. This is shown in 
Table 4 for mercury (Pr = 0.025) and water (Pr = 6). 
For Pr > Pr, the critical wavelength will increase 
while for Pr < Pr, it will decrease. The values of Pr, 

in Table 3, indicate that the critical wavelength 
decreases except for the relatively viscous fluids. 

The results in Table 4 show that the effects of 
viscous dissipation are stronger in the constant tem- 
perature case (Bi + co) relative to the constant heat 
flux case (Bi = 0). The physical explanation of this 
behavior follows from the discussion of the effects of 
Bi for the Di = 0 case. As the Biot number decreases, 
the heat crossing the free surface decreases. As a 
result, the heat retained by a moving fluid particle 
increases. Therefore, the heat exchange due to dissi- 
pation effects becomes less important. 
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EFFETS DE LA DISSIPATION VISQUEUSE SUR LA STABILITE DUN FILM LIQUIDE 
DESCENDANT LE LONG DUN PLAN CHAUD INCLINE 

RbumP--On examine les effets de la dissipation visqueuse sur la stabilite lineaire d’un film liquide descend- 
ant sur un plan incline chaud. On montre que pour le mode thermique d’instabilite, la dissipation visqueuse 
a des influences stabilisantes ou destabilisantes. L’effet global sur la stabilite de I’ecoulement depend de la 

valeur du nombre de Prandtl. 

EINFLUSS DER VISKOSEN DISSIPATION AUF DIE STABILITAT EINES 
FLtiSSIGKEITSFILMES, WELCHER AN EINER BEHEIZTEN, GENEIGTEN PLATTE 

HERABFLIESST 

Zusammenfassung-Der EinfluD der viskosen Dissipation auf die lineare Stabilitat eines Fliissigkeitsfilmes, 
welcher an einer beheizten, gene&en Platte herabstromt, wird analysiert. Dabei zeigt sich, dal3 die viskose 
Dissipation fur die thermische Seite der Instabilitat sowohl stabilisierende wie such destabilisierende 
Wirkungen besitzt. Der EinfluB auf die Stabilitat der Striimung insgesamt hlngt von der Prandtl-Zahl ab. 

BJIMIIHME BII3KOCTHOH ~MCCHI-IAHHM HA YCTOHsMBOCTb HJIEHKM TMAKOCTM, 
CTEKAIQIIIEH HO HAFPETOH HAKJIOHHOH IIJIOCKOCTM 

AHHOTaujUk-k'icCnenyeTC%I BJIHlIHHe BIlJKOCTHOii ~HCCHIIaUHH Ha JlHHeiiH,W yCTOfi'%HBOCTb ",IeHKA XK1(LI- 

K0C~~,cTeKa~Uleii no HarpeToii HaKnOHHOii maCTMHe.rIoKa3aHo,~TO B penme TennoeoR HeyCTOtiqH- 

BOCTH BRJKOCTHaIl llACCWIlaU&ill OKa3bIBaeT KBK CTa6HJlH3HpylOIUHic, TaK r( neCTa6HJIH3HpyKNUH~ 

3+$eKTbI.O6UlaR yCTOi+lHBOCTbTeWH%lX 3aBUCHT OTBeJlH'IHHbI 4ACJIa ~paH,XTJK. 


